剑指 offer 47. 礼物的最大价值
剑指 Offer 47. 礼物的最大价值
在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?
示例 1:
输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 12
解释: 路径 1→3→5→2→1 可以拿到最多价值的礼物
提示:
- 0 < grid.length <= 200
- 0 < grid[0].length <= 200
来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/li-wu-de-zui-da-jie-zhi-lcof 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
Solution 1
动态规划思想,原地修改数组
grid[i][j] += Integer.max(grid[i - 1][j], grid[i][j - 1]);
class Solution {
public int maxValue(int[][] grid) {
for (int i = 1; i < grid.length; i++)
grid[i][0] += grid[i - 1][0];
for (int j = 1; j < grid[0].length; j++)
grid[0][j] += grid[0][j - 1];
for (int i = 1; i < grid.length; i++) {
for (int j = 1; j < grid[0].length; j++) {
grid[i][j] += Integer.max(grid[i - 1][j], grid[i][j - 1]);
}
}
return grid[grid.length - 1][grid[0].length - 1];
}
}
Solution 2
cpp
class Solution
{
public:
int maxValue(vector<vector<int>> &grid)
{
int m = grid.size();
int n = grid[0].size();
if (m == 0 || n == 0)
return 0;
int result[m][n];
result[0][0] = grid[0][0];
for (size_t i = 1; i < m; i++)
result[i][0] = grid[i][0] + result[i - 1][0];
for (size_t j = 1; j < n; j++)
result[0][j] = grid[0][j] + result[0][j - 1];
for (size_t i = 1; i < m; i++)
for (size_t j = 1; j < n; j++)
result[i][j] = grid[i][j] + max(result[i - 1][j], result[i][j - 1]);
return result[m - 1][n - 1];
}
};