剑指 offer 62. 圆圈中最后剩下的数字
剑指 Offer 62. 圆圈中最后剩下的数字
0,1,,n-1这n个数字排成一个圆圈,从数字0开始,每次从这个圆圈里删除第m个数字。求出这个圆圈里剩下的最后一个数字。
例如,0、1、2、3、4这5个数字组成一个圆圈,从数字0开始每次删除第3个数字,则删除的前4个数字依次是2、0、4、1,因此最后剩下的数字是3。
示例 1:
输入: n = 5, m = 3
输出: 3
示例 2:
输入: n = 10, m = 17
输出: 2
限制:
- 1 <= n <= 10^5
- 1 <= m <= 10^6
来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/yuan-quan-zhong-zui-hou-sheng-xia-de-shu-zi-lcof 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
Solution 1
递归解法
class Solution {
public int lastRemaining(int n, int m) {
// suppose the first deleted number is k-1 = kth = m % n
// the circle can be formed as [0, 1, ... k-2, /k-1/, k, ... n-1]
// the next number to delete starts from k, and it is the mth number
// so circle can be reformed as [k, ... n-1, 0, 1, ... k-2], length = n-1
// then use wishful thinking, suppose we've known x = lastRemaining(n-1, m)
// which means in [0, 1, ... n-2] lastRemaining(n-1, m) is x
// then remap x from [0, 1, ... n-2] into [k, ... n-1, 0, 1, ... k-2]
// that is if (x < n - k) x += k; else x -= n - k;
if (n == 0)
return 0;
int x = lastRemaining(n - 1, m);
int k = m % n;
if (x < n - k)
x += k;
else
x -= n - k;
return x;
}
}
Solution 1
循环解法
class Solution {
public int lastRemaining(int n, int m) {
// suppose the first deleted number is k-1 = kth = m % n
// the circle can be formed as [0, 1, ... k-2, /k-1/, k, ... n-1]
// the next number to delete starts from k, and it is the mth number
// so circle can be reformed as [k, ... n-1, 0, 1, ... k-2], length = n-1
// then use wishful thinking, suppose we've known x = lastRemaining(n-1, m)
// which means in [0, 1, ... n-2] lastRemaining(n-1, m) is x
// then remap x from [0, 1, ... n-2] into [k, ... n-1, 0, 1, ... k-2]
// that is if (x < n - k) x += k; else x -= n - k;
// we can rename the n above into i, and use loop instead of recursion
// this process is repeated from i = 1 to i = n
int x = 0;
for (int i = 1; i <= n; i++) {
int k = m % i;
if (x < i - k)
x += k;
else
x -= i - k;
}
return x;
}
}