2462雇佣K位工人的总代价.md

给你一个下标从 0 开始的整数数组 costs ,其中 costs[i] 是雇佣第 i 位工人的代价。

同时给你两个整数 k 和 candidates 。我们想根据以下规则恰好雇佣 k 位工人:

  • 总共进行 k 轮雇佣,且每一轮恰好雇佣一位工人。
  • 在每一轮雇佣中,从最前面 candidates 和最后面 candidates 人中选出代价最小的一位工人,如果有多位代价相同且最小的工人,选择下标更小的一位工人。
    • 比方说,costs = [3,2,7,7,1,2] 且 candidates = 2 ,第一轮雇佣中,我们选择第 4 位工人,因为他的代价最小 [3,2,7,7,1,2] 。
    • 第二轮雇佣,我们选择第 1 位工人,因为他们的代价与第 4 位工人一样都是最小代价,而且下标更小,[3,2,7,7,2] 。注意每一轮雇佣后,剩余工人的下标可能会发生变化。
  • 如果剩余员工数目不足 candidates 人,那么下一轮雇佣他们中代价最小的一人,如果有多位代价相同且最小的工人,选择下标更小的一位工人。
  • 一位工人只能被选择一次。

返回雇佣恰好 k 位工人的总代价。

示例 1:

输入:costs = [17,12,10,2,7,2,11,20,8], k = 3, candidates = 4
输出:11
解释:我们总共雇佣 3 位工人。总代价一开始为 0 。
- 第一轮雇佣,我们从 [17,12,10,2,7,2,11,20,8] 中选择。最小代价是 2 ,有两位工人,我们选择下标更小的一位工人,即第 3 位工人。总代价是 0 + 2 = 2 。
- 第二轮雇佣,我们从 [17,12,10,7,2,11,20,8] 中选择。最小代价是 2 ,下标为 4 ,总代价是 2 + 2 = 4 。
- 第三轮雇佣,我们从 [17,12,10,7,11,20,8] 中选择,最小代价是 7 ,下标为 3 ,总代价是 4 + 7 = 11 。注意下标为 3 的工人同时在最前面和最后面 4 位工人中。
总雇佣代价是 11 。

示例 2:

输入:costs = [1,2,4,1], k = 3, candidates = 3
输出:4
解释:我们总共雇佣 3 位工人。总代价一开始为 0 。
- 第一轮雇佣,我们从 [1,2,4,1] 中选择。最小代价为 1 ,有两位工人,我们选择下标更小的一位工人,即第 0 位工人,总代价是 0 + 1 = 1 。注意,下标为 1 和 2 的工人同时在最前面和最后面 3 位工人中。
- 第二轮雇佣,我们从 [2,4,1] 中选择。最小代价为 1 ,下标为 2 ,总代价是 1 + 1 = 2 。
- 第三轮雇佣,少于 3 位工人,我们从剩余工人 [2,4] 中选择。最小代价是 2 ,下标为 0 。总代价为 2 + 2 = 4 。
总雇佣代价是 4 。

提示:

  • 1 <= costs.length <= 105
  • 1 <= costs[i] <= 105
  • 1 <= k, candidates <= costs.length

Solution 1

class Solution {
    public long totalCost(int[] costs, int k, int candidates) {
        PriorityQueue<Integer> pQfront = new PriorityQueue<>();
        PriorityQueue<Integer> pQback = new PriorityQueue<>();
        long result = 0;
        int startIdx = 0, endIdx = costs.length - 1;
        for (startIdx = 0; startIdx < candidates; startIdx++) {
            int cost = costs[startIdx];
            pQfront.add(cost);
        }
        for (endIdx = costs.length - 1; startIdx <= endIdx && endIdx >= costs.length - candidates; endIdx--) {
            int cost = costs[endIdx];
            pQback.add(cost);
        }
        for (int i = 0; i < k; i++) {
            Integer pQfrontMin = pQfront.peek();
            Integer pQbackMin = pQback.peek();
            if (pQfrontMin == null) {
                pQfrontMin = Integer.MAX_VALUE;
            }
            if (pQbackMin == null) {
                pQbackMin = Integer.MAX_VALUE;
            }
            if (pQfrontMin <= pQbackMin) {
                result += pQfront.poll();
                if (startIdx <= endIdx) {
                    pQfront.add(costs[startIdx++]);
                }
            } else {
                result += pQback.poll();
                if (startIdx <= endIdx) {
                    pQback.add(costs[endIdx--]);
                }
            }
        }
        return result;
    }
}